3.2105 \(\int \frac{1}{(a+\frac{b}{x^4})^{5/2} x^4} \, dx\)

Optimal. Leaf size=262 \[ \frac{\sqrt{\frac{a+\frac{b}{x^4}}{\left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right )^2}} \left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right ) \text{EllipticF}\left (2 \cot ^{-1}\left (\frac{\sqrt [4]{a} x}{\sqrt [4]{b}}\right ),\frac{1}{2}\right )}{8 a^{7/4} b^{3/4} \sqrt{a+\frac{b}{x^4}}}-\frac{\sqrt{\frac{a+\frac{b}{x^4}}{\left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right )^2}} \left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right ) E\left (2 \cot ^{-1}\left (\frac{\sqrt [4]{a} x}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{4 a^{7/4} b^{3/4} \sqrt{a+\frac{b}{x^4}}}+\frac{\sqrt{a+\frac{b}{x^4}}}{4 a^2 \sqrt{b} x \left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right )}-\frac{1}{4 a^2 x^3 \sqrt{a+\frac{b}{x^4}}}-\frac{1}{6 a x^3 \left (a+\frac{b}{x^4}\right )^{3/2}} \]

[Out]

-1/(6*a*(a + b/x^4)^(3/2)*x^3) - 1/(4*a^2*Sqrt[a + b/x^4]*x^3) + Sqrt[a + b/x^4]/(4*a^2*Sqrt[b]*(Sqrt[a] + Sqr
t[b]/x^2)*x) - (Sqrt[(a + b/x^4)/(Sqrt[a] + Sqrt[b]/x^2)^2]*(Sqrt[a] + Sqrt[b]/x^2)*EllipticE[2*ArcCot[(a^(1/4
)*x)/b^(1/4)], 1/2])/(4*a^(7/4)*b^(3/4)*Sqrt[a + b/x^4]) + (Sqrt[(a + b/x^4)/(Sqrt[a] + Sqrt[b]/x^2)^2]*(Sqrt[
a] + Sqrt[b]/x^2)*EllipticF[2*ArcCot[(a^(1/4)*x)/b^(1/4)], 1/2])/(8*a^(7/4)*b^(3/4)*Sqrt[a + b/x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.133328, antiderivative size = 262, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {335, 290, 305, 220, 1196} \[ \frac{\sqrt{\frac{a+\frac{b}{x^4}}{\left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right )^2}} \left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right ) F\left (2 \cot ^{-1}\left (\frac{\sqrt [4]{a} x}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{8 a^{7/4} b^{3/4} \sqrt{a+\frac{b}{x^4}}}-\frac{\sqrt{\frac{a+\frac{b}{x^4}}{\left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right )^2}} \left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right ) E\left (2 \cot ^{-1}\left (\frac{\sqrt [4]{a} x}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{4 a^{7/4} b^{3/4} \sqrt{a+\frac{b}{x^4}}}+\frac{\sqrt{a+\frac{b}{x^4}}}{4 a^2 \sqrt{b} x \left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right )}-\frac{1}{4 a^2 x^3 \sqrt{a+\frac{b}{x^4}}}-\frac{1}{6 a x^3 \left (a+\frac{b}{x^4}\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b/x^4)^(5/2)*x^4),x]

[Out]

-1/(6*a*(a + b/x^4)^(3/2)*x^3) - 1/(4*a^2*Sqrt[a + b/x^4]*x^3) + Sqrt[a + b/x^4]/(4*a^2*Sqrt[b]*(Sqrt[a] + Sqr
t[b]/x^2)*x) - (Sqrt[(a + b/x^4)/(Sqrt[a] + Sqrt[b]/x^2)^2]*(Sqrt[a] + Sqrt[b]/x^2)*EllipticE[2*ArcCot[(a^(1/4
)*x)/b^(1/4)], 1/2])/(4*a^(7/4)*b^(3/4)*Sqrt[a + b/x^4]) + (Sqrt[(a + b/x^4)/(Sqrt[a] + Sqrt[b]/x^2)^2]*(Sqrt[
a] + Sqrt[b]/x^2)*EllipticF[2*ArcCot[(a^(1/4)*x)/b^(1/4)], 1/2])/(8*a^(7/4)*b^(3/4)*Sqrt[a + b/x^4])

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{1}{\left (a+\frac{b}{x^4}\right )^{5/2} x^4} \, dx &=-\operatorname{Subst}\left (\int \frac{x^2}{\left (a+b x^4\right )^{5/2}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{1}{6 a \left (a+\frac{b}{x^4}\right )^{3/2} x^3}-\frac{\operatorname{Subst}\left (\int \frac{x^2}{\left (a+b x^4\right )^{3/2}} \, dx,x,\frac{1}{x}\right )}{2 a}\\ &=-\frac{1}{6 a \left (a+\frac{b}{x^4}\right )^{3/2} x^3}-\frac{1}{4 a^2 \sqrt{a+\frac{b}{x^4}} x^3}+\frac{\operatorname{Subst}\left (\int \frac{x^2}{\sqrt{a+b x^4}} \, dx,x,\frac{1}{x}\right )}{4 a^2}\\ &=-\frac{1}{6 a \left (a+\frac{b}{x^4}\right )^{3/2} x^3}-\frac{1}{4 a^2 \sqrt{a+\frac{b}{x^4}} x^3}+\frac{\operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^4}} \, dx,x,\frac{1}{x}\right )}{4 a^{3/2} \sqrt{b}}-\frac{\operatorname{Subst}\left (\int \frac{1-\frac{\sqrt{b} x^2}{\sqrt{a}}}{\sqrt{a+b x^4}} \, dx,x,\frac{1}{x}\right )}{4 a^{3/2} \sqrt{b}}\\ &=-\frac{1}{6 a \left (a+\frac{b}{x^4}\right )^{3/2} x^3}-\frac{1}{4 a^2 \sqrt{a+\frac{b}{x^4}} x^3}+\frac{\sqrt{a+\frac{b}{x^4}}}{4 a^2 \sqrt{b} \left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right ) x}-\frac{\sqrt{\frac{a+\frac{b}{x^4}}{\left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right )^2}} \left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right ) E\left (2 \cot ^{-1}\left (\frac{\sqrt [4]{a} x}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{4 a^{7/4} b^{3/4} \sqrt{a+\frac{b}{x^4}}}+\frac{\sqrt{\frac{a+\frac{b}{x^4}}{\left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right )^2}} \left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right ) F\left (2 \cot ^{-1}\left (\frac{\sqrt [4]{a} x}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{8 a^{7/4} b^{3/4} \sqrt{a+\frac{b}{x^4}}}\\ \end{align*}

Mathematica [C]  time = 0.033896, size = 77, normalized size = 0.29 \[ \frac{x \left (a x^4+b\right ) \sqrt{\frac{a x^4}{b}+1} \, _2F_1\left (\frac{3}{4},\frac{5}{2};\frac{7}{4};-\frac{a x^4}{b}\right )-b x}{3 a b \sqrt{a+\frac{b}{x^4}} \left (a x^4+b\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b/x^4)^(5/2)*x^4),x]

[Out]

(-(b*x) + x*(b + a*x^4)*Sqrt[1 + (a*x^4)/b]*Hypergeometric2F1[3/4, 5/2, 7/4, -((a*x^4)/b)])/(3*a*b*Sqrt[a + b/
x^4]*(b + a*x^4))

________________________________________________________________________________________

Maple [C]  time = 0.018, size = 502, normalized size = 1.9 \begin{align*}{\frac{1}{12\,{x}^{10}} \left ( 3\,\sqrt{{\frac{i\sqrt{a}}{\sqrt{b}}}}{a}^{7/2}\sqrt{b}{x}^{11}+3\,i{\it EllipticE} \left ( x\sqrt{{i\sqrt{a}{\frac{1}{\sqrt{b}}}}},i \right ) \sqrt{-{ \left ( i\sqrt{a}{x}^{2}-\sqrt{b} \right ){\frac{1}{\sqrt{b}}}}}\sqrt{{ \left ( i\sqrt{a}{x}^{2}+\sqrt{b} \right ){\frac{1}{\sqrt{b}}}}}{x}^{8}{a}^{3}b+4\,\sqrt{{\frac{i\sqrt{a}}{\sqrt{b}}}}{a}^{5/2}{b}^{3/2}{x}^{7}-3\,i\sqrt{-{ \left ( i\sqrt{a}{x}^{2}-\sqrt{b} \right ){\frac{1}{\sqrt{b}}}}}\sqrt{{ \left ( i\sqrt{a}{x}^{2}+\sqrt{b} \right ){\frac{1}{\sqrt{b}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{a}{\frac{1}{\sqrt{b}}}}},i \right ){x}^{8}{a}^{3}b+6\,i{\it EllipticE} \left ( x\sqrt{{i\sqrt{a}{\frac{1}{\sqrt{b}}}}},i \right ) \sqrt{-{ \left ( i\sqrt{a}{x}^{2}-\sqrt{b} \right ){\frac{1}{\sqrt{b}}}}}\sqrt{{ \left ( i\sqrt{a}{x}^{2}+\sqrt{b} \right ){\frac{1}{\sqrt{b}}}}}{x}^{4}{a}^{2}{b}^{2}+\sqrt{{i\sqrt{a}{\frac{1}{\sqrt{b}}}}}{a}^{{\frac{3}{2}}}{b}^{{\frac{5}{2}}}{x}^{3}-6\,i\sqrt{-{ \left ( i\sqrt{a}{x}^{2}-\sqrt{b} \right ){\frac{1}{\sqrt{b}}}}}\sqrt{{ \left ( i\sqrt{a}{x}^{2}+\sqrt{b} \right ){\frac{1}{\sqrt{b}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{a}{\frac{1}{\sqrt{b}}}}},i \right ){x}^{4}{a}^{2}{b}^{2}+3\,i{\it EllipticE} \left ( x\sqrt{{i\sqrt{a}{\frac{1}{\sqrt{b}}}}},i \right ) \sqrt{-{ \left ( i\sqrt{a}{x}^{2}-\sqrt{b} \right ){\frac{1}{\sqrt{b}}}}}\sqrt{{ \left ( i\sqrt{a}{x}^{2}+\sqrt{b} \right ){\frac{1}{\sqrt{b}}}}}a{b}^{3}-3\,i\sqrt{-{ \left ( i\sqrt{a}{x}^{2}-\sqrt{b} \right ){\frac{1}{\sqrt{b}}}}}\sqrt{{ \left ( i\sqrt{a}{x}^{2}+\sqrt{b} \right ){\frac{1}{\sqrt{b}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{a}{\frac{1}{\sqrt{b}}}}},i \right ) a{b}^{3} \right ){a}^{-{\frac{5}{2}}} \left ({\frac{a{x}^{4}+b}{{x}^{4}}} \right ) ^{-{\frac{5}{2}}}{b}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{{i\sqrt{a}{\frac{1}{\sqrt{b}}}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b/x^4)^(5/2)/x^4,x)

[Out]

1/12*(3*(I*a^(1/2)/b^(1/2))^(1/2)*a^(7/2)*b^(1/2)*x^11+3*I*EllipticE(x*(I*a^(1/2)/b^(1/2))^(1/2),I)*(-(I*a^(1/
2)*x^2-b^(1/2))/b^(1/2))^(1/2)*((I*a^(1/2)*x^2+b^(1/2))/b^(1/2))^(1/2)*x^8*a^3*b+4*(I*a^(1/2)/b^(1/2))^(1/2)*a
^(5/2)*b^(3/2)*x^7-3*I*(-(I*a^(1/2)*x^2-b^(1/2))/b^(1/2))^(1/2)*((I*a^(1/2)*x^2+b^(1/2))/b^(1/2))^(1/2)*Ellipt
icF(x*(I*a^(1/2)/b^(1/2))^(1/2),I)*x^8*a^3*b+6*I*EllipticE(x*(I*a^(1/2)/b^(1/2))^(1/2),I)*(-(I*a^(1/2)*x^2-b^(
1/2))/b^(1/2))^(1/2)*((I*a^(1/2)*x^2+b^(1/2))/b^(1/2))^(1/2)*x^4*a^2*b^2+(I*a^(1/2)/b^(1/2))^(1/2)*a^(3/2)*b^(
5/2)*x^3-6*I*(-(I*a^(1/2)*x^2-b^(1/2))/b^(1/2))^(1/2)*((I*a^(1/2)*x^2+b^(1/2))/b^(1/2))^(1/2)*EllipticF(x*(I*a
^(1/2)/b^(1/2))^(1/2),I)*x^4*a^2*b^2+3*I*EllipticE(x*(I*a^(1/2)/b^(1/2))^(1/2),I)*(-(I*a^(1/2)*x^2-b^(1/2))/b^
(1/2))^(1/2)*((I*a^(1/2)*x^2+b^(1/2))/b^(1/2))^(1/2)*a*b^3-3*I*(-(I*a^(1/2)*x^2-b^(1/2))/b^(1/2))^(1/2)*((I*a^
(1/2)*x^2+b^(1/2))/b^(1/2))^(1/2)*EllipticF(x*(I*a^(1/2)/b^(1/2))^(1/2),I)*a*b^3)/a^(5/2)/((a*x^4+b)/x^4)^(5/2
)/x^10/b^(3/2)/(I*a^(1/2)/b^(1/2))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a + \frac{b}{x^{4}}\right )}^{\frac{5}{2}} x^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x^4)^(5/2)/x^4,x, algorithm="maxima")

[Out]

integrate(1/((a + b/x^4)^(5/2)*x^4), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{x^{8} \sqrt{\frac{a x^{4} + b}{x^{4}}}}{a^{3} x^{12} + 3 \, a^{2} b x^{8} + 3 \, a b^{2} x^{4} + b^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x^4)^(5/2)/x^4,x, algorithm="fricas")

[Out]

integral(x^8*sqrt((a*x^4 + b)/x^4)/(a^3*x^12 + 3*a^2*b*x^8 + 3*a*b^2*x^4 + b^3), x)

________________________________________________________________________________________

Sympy [C]  time = 2.8304, size = 39, normalized size = 0.15 \begin{align*} - \frac{\Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{3}{4}, \frac{5}{2} \\ \frac{7}{4} \end{matrix}\middle |{\frac{b e^{i \pi }}{a x^{4}}} \right )}}{4 a^{\frac{5}{2}} x^{3} \Gamma \left (\frac{7}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x**4)**(5/2)/x**4,x)

[Out]

-gamma(3/4)*hyper((3/4, 5/2), (7/4,), b*exp_polar(I*pi)/(a*x**4))/(4*a**(5/2)*x**3*gamma(7/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a + \frac{b}{x^{4}}\right )}^{\frac{5}{2}} x^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x^4)^(5/2)/x^4,x, algorithm="giac")

[Out]

integrate(1/((a + b/x^4)^(5/2)*x^4), x)